Model “B_G” Series
Gas-Fired Copper Fin
Water Boilers

Operating and Maintenance Manual

Designed and Manufactured in
Accordance with
ASME Code Section IV,
Heating Boilers

E.T.L. Listed
ASME Code Construction and
Stamped.

Photo shown may vary from actual model.
INSTALLATION and MAINTENANCE INSTRUCTIONS for SERIES “E” and “G” COPPER FIN COIL HEATERS

FOR YOUR SAFETY
IF YOU SMELL GAS

1. OPEN WINDOWS
2. DON’T TOUCH ELECTRICAL SWITCHES
3. EXTINGUISH ANY OPEN FLAME
4. IMMEDIATELY CALL YOUR GAS SUPPLIER

FOR YOUR SAFETY

DO NOT STORE GASOLINE OR OTHER FLAMMABLE VAPORS AND LIQUIDS IN THE VICINITY OF THIS OR ANY OTHER APPLIANCE

RECEIVING INSPECTION AND INITIAL START UP PROCEDURES

(1) Inspect the heater for shipping damage. Make sure that you open the box and visually inspect the heater. An undamaged container does not guarantee undamaged contents.

(2) If the heater is damaged when received, a claim must be filed by you with the shipping company. Ace Heating Solutions, LLC is not responsible for any damage that the heater receives while in shipping. Although each shipping company has its own procedure for filing a claim, the information contained below should provide a guideline for filing a freight claim.

(3) Check and tighten the following as required: plumbing, gas supply, and electrical connections. Lift the fire shield and inspect the burners. Tighten as required.

Ace Heating Solutions, LLC
2701 S. HARBOR BLVD. • SANTA ANA, CA 92704
PHONE: (714) 540-2230 • FAX: (714) 540-2239
www.aceheatingllc.com
INSTRUCTIONS
For Ace Gas Fired Copper Fin Volume Water Heaters

CAUTION
Should over heating occur, or the gas supply fail to shut off, turn off the manual gas valve to the appliance immediately.

A. INSTALLATION
(1) This section addresses the installation of Ace Heating Solutions, LLC Water Heaters within mechanical systems, and is intended to provide some explanation of normal system hook-up and operation as well as descriptions of some commonly encountered system problems and solutions.
(2) Install the heater in accordance with the following instructions. A qualified installation company should always be used.
(3) The heater must be installed in accordance with all state and local codes, and all national codes, including, but not limited to:
 - ANSI Z21.10.2, GAS WATER HEATERS
 - ANSI Z223.1, NATIONAL FUEL GAS CODE
 - ANSI / NFPA 70, NATIONAL ELECTRIC CODE.
(4) Install per heater-tank diagram located on page 4.
(5) Connect the piping to draw cool water from the lower portion of the tank through the circulating pump to the bottom inlet heater connection. If a flow switch is used it should be connected near the pump outlet.
(6) Connect the hot water return line from the heater to the tank as shown in the hook-up diagram.
(7) Connect the cold water inlet supply directly into the tank as shown in the hook-up diagram. Do not use a check valve on the cold water inlet line. If a check valve is installed in the cold inlet line then a properly sized expansion tank should be added to the system to prevent the relief valve from popping.
(8) The hot water outlet line should be connected at the highest part of the tank to avoid air entrapment, which can cause rapid corrosion at the top of the tank.
(9) Install a thermometer, a drain valve, and a relief valve (anode if required) on the tank as shown in the hook-up diagram.
(10) Page 4 illustrates a normal installation for a single heater with a storage tank. Cold water is supplied to the storage tank while system hot water is drawn from the top of the storage tank. Water is supplied to the water heater by a circulating pump which is normally wired to operate on a continuous basis. Return Water temperature must be above 140 degrees F to avoid condensation damage. Note: Page 4 depicts piping schematics for multiple heater installations with vertical and horizontal storage tanks.

B. IDENTIFICATION
(1) Your Ace Water Heater carries two identification plates. The coil plate, which carries the ASME Code Stamping and Registration Number (when applicable) is attached to the coil just inside the upper manifold assembly. The boiler nameplate lists information concerning the input and output of the unit, electrical and gas ratings, working pressure and clearance to adjacent construction figures. In addition the model and serial numbers are on the plate. You will need these to order replacement parts from the manufacturing representative in your area or from the factory.
(2) The information on the National Board plate is the same as on the name plate with the exception of the National Board registration number, which is required in most states for installation of the unit.
 Do not remove either of these plates from the unit for any reason.

C. LOCATION
(1) Set the heater on a non-combustible floor. If the floor is combustible, a special "Combustible Floor Base" (CFB) must be used. Locate the heater so that leakage from tank or connections will be directed to a floor drain and will not damage adjacent area or lower level floors.
(2) The minimum clearance between a heater and a storage tank is 6". For multiple heater installations a minimum of 6" clearance between heaters shall be maintained. For alcove installation, the minimum clearance to combustible construction is 24" to side and rear walls and 36" from the top of the heater to the ceiling. The front of the alcove shall remain open. Local and state codes may require greater clearances.
(3) Allow sufficient space in front of heater for cleaning and removal of burners, replacement of the draft hood and controls, and the adjustment of all parts requiring such attention. Keep the area around the heaters free from combustibles and flammable liquids.
(4) Minimum ventilation and combustible air openings to the room in which the heater is located must be provided in accordance with NATIONAL FUEL GAS CODE ANSI Z21.13.

D. COMBUSTION AND VENTILATION AIR
(1) Ace recommends that two permanent openings to outside air be provided, one 6" from the floor and the other 6" from the ceiling. The combined area of the two openings should not be less than 200 sq. in. for the first 100,00 BTUH heater input, and 100 sq. in. for each additional 100,000 BTUH heater input.
(2) All additional gas fired equipment should be calculated using ANSI Z223.1, and local codes.
(3) The openings should have permanent, non-adjustable louvers properly designed so that they provide a baffling effect under wind conditions. Wood louvers may be considered to have 20-25% free area, and metal louvers may be considered to have 50-75% free area.
(4) It is important to locate the heaters so that they are not adversely affected by wind, draft or freezing conditions that may exist in the room.
(5) Air may be supplied by the use of ducting, fans, etc. It is extremely important, however, that any system be designed and installed by a qualified professional in such a manner that no positive or negative air pressure exists in the room in which the heaters are installed. Such a problem will result in improper combustion and sooting problems.
(6) Required draft at the outlet stack must be within the range of -.02 to -.04 inches water column.

E. ELECTRICAL CONNECTIONS
(1) A junction box is provided on the heater jacket for the electrical service connection.
(2) For multiple heater installations, each heater is to be wired in parallel with all other heaters so that each heater will operate independently.
(3) The circulating pump (and the return pump if used) should be wired in parallel with the heater(s) to run continuously.
(4) The heater(s) when installed, must be electrically grounded in accordance with state and local codes and in accordance with the NATIONAL ELECTRICAL CODE ANSI / NFPA 70-1984.
(5) If any of the original wiring as supplied with the heater/boiler is replaced, it must be replaced with 18" AWG TFF wire or its equivalent.
F. RELIEF VALVES
(1) The storage tank should be protected with a pressure (or combination temperature and pressure) relief valve set so as not to exceed the maximum tank operating pressure. The relief valve should be located within 6" of the top of the tank. Refer to local codes for the type of relief valve required.
(2) Each heater should be protected with its own pressure relief valve. The relief valve should be rated for the BTU/hr or LBS/hr of heater output.
(4) Manually operate relief valves at least once a year.
(5) If the temperature and pressure relief valve(s) on the appliance(s) discharge periodically, a problem exists and service to the water system is required. Periodic discharge may be due to thermal expansion in a closed water system.

G. AIR ELIMINATION
(A) All of the air must be removed from the water piping in the system before the system will function properly. Therefore, all high points in the system must be vented vent purged. Relief valves may be used to purge air when they are at the high point.
(B) If a water heater is installed in a closed water system, contact the water heater supplier or local plumbing inspector on methods to allow proper system expansion. A weeping pressure or temperature relief valve may be due to thermal expansion (i.e. expansion tanks) in a closed water system. Do not plug the temperature and pressure relief valve.

H. VENTING SYSTEM (FLUE GASES)
(1) Vents for the heater(s) may be run individually or manifolded. Two or more heaters may be vented through a common vent connector or manifold. The common vent connector or manifold shall be located at the highest level consistent with available head room or clearance to combustible material, and shall be sized in accordance with approved engineering methods. The area of the common vent connector or manifold shall not be less than the combined area of the individual draft hood outlets or the individual vent connectors.

I. GAS CONNECTION
(1) The gas line should be a separate line running directly from the gas meter to the heater, unless the existing gas line is of ample capacity. Verify the capacity of the existing gas piping if it is to be used.
(2) Install a union at the connection to the heater manifold.
(3) Refer to the rating plate on the shell of the heater for proper gas manifold pressure. The manifold pressure is measured downstream of the gas pressure regulator. Do not exceed the maximum gas pressure specified on the rating plate.
(4) A trap (drip leg) must be installed upstream of the gas pressure regulator.
(5) The heater must be disconnected from the gas supply piping system during any pressure testing of the gas supply piping.
(6) Gas connections and heater should be properly tested for leaks before being put into operation.
(7) Gas supply lines should be purged of air at the heater before startup.
(8) The flow rate is determined by controls preset at the factory. There is no field adjustment for the minimum input rate.

J. TESTING
(1) Your heater has been pressure tested in accordance with ASME CODE SECTION IV and fire tested in accordance with U.L. 795.
(2) It is recommended that the heater and the system into which it is installed be tested before operating the system. The exact nature of the test(s) are determined by the system's component(s), but will generally consist of a water pressure test and a gas leak test. This testing should be completed as part of the normal installation procedure by the installing company.
(3) Once the entire installation is complete, the unit should have an operation test to insure that the ignition system safety shutoff device works properly. Instructions in the manufacturer's literature shall be followed in conducting this test.

K. MAINTENANCE

CAUTION!!! To prevent scalding and/or personal injury, pipe outlet of relief valve(s) to a floor drain with NO intervening valves or restrictions.

L. AQUASTAT INFORMATION
(1) The Heater is equipped with two aquastats - a high limit safety aquastat in the upper (hot out) manifold and an operating aquastat (Thermostat) in the lower (tank water in) manifold. The operating aquastat "Thermostat" should be set approximately 10°F lower than the desired tank temperature setting. The Hi limit aquastat should be set at least 60°F higher than the thermostat setting. For example: if desired water temperature in tank is 140°F set the thermostat at 130°F and Hi limit at 200°F; for 150°F tank water temperature set the thermostat at 140°F and the Hi limit at 210°F. When 2 or more heaters are operated together, set the 2nd heater thermostat 3° to 5° lower than the first heater thermostat and the third heater thermostat 3° to 5° lower than the 2nd heater thermostat, etc. Check the tank thermometer and correct thermostat so that the heater shuts off at desired tank water temperature.
(2) Water entering heater below 140 °F will cause the heater to condense, limiting its service life.
These are factory recommended hook-ups. They have been tested and proved over the years and should be followed exactly EVEN THOUGH YOU ARE USED TO DOING THINGS DIFFERENTLY.
CSD-1 GAS TRAIN FOR MODELS B11 THRU B15

NOTE: FOR PROPANE USE BLUE SPRING
NOTE: FOR PROPANE USE BLUE REGULATOR SPRING AND PROPANE PILOT ORIFICE.

120VAC WIRING

24VAC WIRING

FIELD Wiring

FROM GROUND (BY OTHERS)

FROM 120 VAC FUSED DISCONNECT

TO 120 VAC PUMP

HONEYWELL
VR 8304 M
A
B
C
B2G - B4G
BHG300

ROBERTSHAW
7000 DERHC
7000 DERHC
B11G - B15G
BHG1000
B5G - B8G
BHG500 - 750

ALTERNATE WIRING FOR UNITS WITH TANK AQUASTAT.

1. OPERATING CONTROL
2. FLOW SWITCH
3. HIGH LIMIT CONTROL (MANUAL RESET)
4. TO TANK AQUASTAT
5. REMOVE JUMPER BETWEEN TERMINAL 4 AND 5 AND REPLACE JUMPER BETWEEN TERMINAL 5 AND 6 TO BYPASS OPERATING CONTROL.

S8610-H (INDOOR)
S8610-M (OUTDOOR)
TO GAS VALVE
“D”, “E” OR “G” SERIES ASSEMBLY

■ THIS LIST COVERS PARTS EXCEPT THOSE IN GAS TRAIN OR IN CONTROL ASSEMBLY. CONSULT APPROPRIATE LIST FOR THESE ITEMS

■ ALL REPAIR WORK SHOULD BE PERFORMED BY A QUALIFIED SERVICE ORGANIZATION.

NOT INCLUDING CONTROLS AND GAS TRAIN

BOTH MODEL AND SERIAL NUMBERS MUST BE FURNISHED TO OBTAIN CORRECT PARTS

Ace Heating Solutions, LLC maintains a policy of continuous improvements and therefore reserves the right to change specifications without notice.
FACTORY LIMITED WARRANTY POLICY

The Ace Factory limited warranty provides assurance that all products are free from manufacturer's defects at the time of shipment and meet specifications and performance described in the product literature.

It is important to understand the difference between a factory warranty and an installed warranty. There are many factors that can occur to the products after they are shipped that the company has no control over and can not fully verify. These includes:

1. Hidden damage during the shipping.
2. Handling damage.
3. Damage during storage.
4. Installation conditions.
5. Other unknown variables in the system design: maintenance, pulsation and vibrations.

The installed warranty is the responsibility of the architect, specifying engineer, contractor and/or owner who jointly have control over the application, installation, location, operating and maintenance conditions.

The Ace Heating Solutions, LLC warranty excludes extended liabilities. Extended liability typically occurs when products are installed without proper drainage, flooding containment or when safety devices are not tested and repaired or replaced when needed.

Product problems are often caused by the condition of the water, the lack of water treatment and/or the improper treatment of the water, insufficient combustion air, improper draft conditions, bolts not re-tightened, pipes not flushed and cleaned of oil, metal chips, rags, vibration and pulsation etc. These are installation, operating and/or maintenance conditions that are beyond the seller's responsibility and are not covered by the factory warranty, but may be covered by the installer's warranty.

The factory warranty covering company products is based upon extensive product development and testing. Combustion products undergo certification testing and approvals to Underwriters Laboratory (UL) standards. Auditing of the production of combustion products is conducted by a nationally recognized testing laboratory.

Pressure vessel products are designed and manufactured to American Society of Mechanical Engineering (ASME) and National Board (NB) Design standards. Design reviews, factory product manufacturing quality inspections and testing are carried out by a third party National Board authorized inspection agency.

Ace Heating Solutions, LLC products have proven themselves in service for over 85 years which indicates that the company products perform exceedingly well when normal installation, operating and maintenance conditions exist.

The following is a review from the terms and conditions of sale. Also included in paragraph two, below, is the Ace Heating Solutions, LLC non-conformance policy.

1. Ace Heating Solutions, LLC warrants its products against defective material and/or workmanship only. The warranty does not apply to operational failures, electrical failures, gasket leaks, and/or other malfunctions caused by improper application, installation and/or maintenance.

2. It is the buyer's responsibility to inspect and accept the product, when received, as conforming to their purchase order, specifications and approved drawings. All claims for non-conformance, errors, shortages, etc. must be made within 10 days after receipt of the shipment.

3. Ace Heating Solutions, LLC do not provide a warranty or guarantee, express or implied, in any manner, form, usage of trade, merchantability or fitness which extend beyond the product description and quotation.

4. Ace Heating Solutions, LLC liability is limited to the factory repair or replacement of warranty failures, or non-conformance, upon the return of the product to the factory.

5. Ace Heating Solutions, LLC is not liable for any direct or consequential damages.

6. Ace Heating Solutions, LLC warranty is based upon section 23161(2) of the uniform commercial code and is printed in the terms and conditions of sale which is referenced in every quotation, on the back of sales order acknowledgements and invoices. It is legally correct and is an industry standard policy.
In addition to our standard one (1) year warranty against defective parts and workmanship, Ace Heating Solutions, LLC provides the following guarantee with all commercial hot water, forced circulation, space heating boilers:

Ace Heating Solutions, LLC guarantees this new boiler pressure vessel for twenty (20) years after date of installation from damage due to thermal shock. Thermal shock occurs when cold makeup water, up to 150°F less than the boiler water outlet temperature, is added directly into the boiler while the boiler is operating within the normal temperature range from 140°F to 250°F with a temperature rise from 20°F to 40°F. This guarantee shall cover damage to the boiler tubes, tube headers, and tube sheets when such damage is attributed to unequal expansion, poor circulation and/or other causes quite often described as “thermal shock”. This guarantee does not cover damage or failures that can be attributed to corrosion, condensation, scale, boiler treatment chemicals, dirt accumulation, low water conditions, or any other abnormal operating conditions.

The liability of Ace Heating Solutions, LLC is limited solely to the replacement of the complete pressure vessel, with tubes, if found by our inspection to be damaged by thermal shock. In no event shall Ace Heating Solutions, LLC be held liable for replacement labor charges or for freight or handling charges.
Ajax Boiler Inc. provides a limited warranty on its products against defective material and/or workmanship only. This limited warranty is not applicable to operational failures, electrical failures, gasket leaks, wear or malfunctions caused by improper application, installation, and/or maintenance.

Product Period - The following Limited Warranty period are from date of shipment:

- **Boiler Pressure Vessels:** One year.
- **Carbon Steel Tank and Heat Exchanger Pressure Vessels:** One year.
- **Stainless Steel Tanks:** Three years.
- **Single-wall or Double-wall Tank/Exchanger Coils:** One year.
- **Single-wall or Double-wall Mini-Packs™:** One year.
- **Atlas Series Condensing Boiler:** One year.
- **Linings:** (Pro-rated Warranty)
 - In Section VIII Tanks: Glass 30" dia. and above (Five years).
 - Glass 24" dia. and under (One year).
 - Cement (Five years).
 - Pre-Krete (Ten years).
 - In Section IV Tanks: Glass (One year).

Controls: Components manufactured by other than Ajax Boiler Inc. such as controls, instruments, forced draft burner, etc., provided with the boilers and packaged products are not covered by the Ajax Boiler Inc. Warranty. However, Ajax Boiler Inc. extends to the customer the same warranty provided by the manufacturer to Ajax Boiler Inc. The customer shall receive the full benefits of adjustments made to Ajax Boiler Inc. by the manufacturer.

Any claim for adjustment under this limited warranty must be made within the warranty period. Ajax Boiler Inc.’s liability shall be limited to factory repair or, at Ajax Boiler Inc.’s option, replacement of all parts which, upon test and examination by Ajax Boiler Inc., prove to be defective material and/or workmanship and within the above limited warranty. If required by Ajax Boiler Inc., parts which are claimed to be defective must be promptly delivered to the Ajax Boiler Inc. facility, transportation charges prepaid. This warranty does not cover the cost of labor, removal, or installation of the warranted item during the limited period. This warranty is limited to the above and applies only for the period set forth. Ajax Boiler Inc. will not be liable for any loss damage, direct, incidental or consequential damages of any kind, whether based upon warranty, contract, negligence or strict liability and arising in connection with the sale, use or repair of the products. Ajax Boiler Inc.’s maximum liability shall exceed the contract price for the product’s merchantability or fitness for any particular purpose and in no event shall be held responsible for any consequential damages.

For complete Limited Warranty conditions see Section G and H under terms and condition of sale.

Ace Heating Solutions, LLC is referred to herein as Ace Heating Solutions, LLC

Ace Heating Solutions, LLC
2701 S. Harbor Blvd. • SANTA ANA, CA 92704
PHONE: (714) 540-2230 • FAX: (714) 540-2239
www.aceheatingllc.com
WARNING

PRODUCT SAFETY NOTICE

ACE BOILER AND WATER HEATER PRODUCTS OPERATE AT HIGH TEMPERATURE AND PRESSURES

• Before using this product, read and understand instructions. Save these instructions for future use.
• Before servicing, to prevent serious burns or injury, the boiler and water heater products must be cooled to less than 80°F (27°C) and the pressure must be 0 psi (0 bar).
• Turn off the electrical power before making electrical connections to prevent electrical shock.
• These products must be placed in a controlled location where untrained or unqualified personnel cannot access the operating or safety controls, must not be able to come in contact with high temperature or high pressure parts and must not perform maintenance or demolition work.
• All work performed must be by qualified properly equipped personnel trained in the proper application, installation, and maintenance or demolition of plumbing, steam, and electrical equipment and/or systems in accordance with all applicable codes and ordinances.
• Ajax Boilers and Water Heaters are complete package units with safety and operating controls and are constructed with non ASBESTOS materials. Any replacement gaskets, refractory, insulation, etc used must not contain Asbestos.
• No additional insulation is required on the Boilers and Water Heaters.
• Additions or replacement of insulation on any connecting pipes or accessories to the Boilers and/or Water Heaters must be of “NON-ASBESTOS” and contain only non-hazardous materials.
• Crystalline Silica, a material known to cause cancer, may be encapsulated in some refractory or insulation materials and must be handled only by authorized trained personnel. Crystalline Silica as used is encapsulated and is not harmful in this form. Care must be taken during removal or replacement of refractory or insulation to remove it in bulk form and avoid generation or inhalation of dust. Removal must be properly performed by trained, qualified and equipped personnel. This is also true of Asbestos not contained in ACE products but may be otherwise contained in replacement materials or parts, in connecting piping or other nearby products.
• All safety and operating controls must be set within the specified operating limits and tested periodically to assure proper operation. All limit and operating controls must be installed in series on the boiler.
• Connect drain pipes to a safe drain to prevent serious personal injury from relief valve discharge and or from boiler blow down discharge.
• After installation, check for proper operation of all limit and operating controls before leaving the site.
• Perform scheduled and annual inspections including checking Controls for proper calibration and performance.

Failure to follow these warnings, to allow access by unauthorized persons and the use of non-properly trained and equipped personnel in the operation, service, modification, removal or demolition of these products or replacement of parts with non-authorized factory non-asbestos materials could cause damage, personal injury or death.

Ace Heating Solutions, LLC
2701 S. Harbor Blvd. • Santa Ana, CA 92704
Phone: (714) 540-2230 • Fax: (714) 540-2239
www.aceheatingllc.com

November 2014 ace
APPLICATION

These ignition modules provide ignition sequence, flame monitoring, and safety shutoff for intermittent pilot central furnaces and heating appliances. S8610 and S8670 models include a connector that converts the existing ignition cable from a stud terminal receptacle to a 1/4 inch female quick-connect. S8610 and S8670 provide up to 1.0 A pilot and 2.0 A main valve current rating. Minimum ambient temperature rating is -40°F [-40°C]. Maximum ambient rating is +175°F [+79°C] for S8610, S8670 used with 1.0 A or less main valve. Maximum for S8610, S8670 used with 1.0 to 2.0 A main valve is +165°F [+74°C]. See Table 1 for a summary of other differences between models.

| TABLE 1—INTERMITTENT PILOT IGNITION MODULES. |
|-----------------|-----------------|-----------------|-----------------|
| MODEL | IGNITER SENSOR TYPE | TYPE OF GAS | PREPURGE TIMING | 100 PERCENT SHUTOFF TIMING | LOCKOUT TIMING | IGNITION SEQUENCE |
| S8610A | Separate | Natural | None | No | No | Spark on until pilot lightoff or manual shutoff; pilot valve open until manual shutdown. |
| S8610F | Combination | Natural or LP | None | Yes, at lockout | 15 or 90 sec. max., as ordered | Spark on until pilot lightoff or lockout; pilot valve closes on lockout. |
| S8610B | Separate | Natural or LP | None | Yes, at lockout | 15 or 90 sec. max., as ordered | Ignition trial follows prepurge; spark on until pilot lightoff or lockout; pilot valve closes on lockout. |
| S8670D | Combination | Natural or LP | 45 sec. | Yes, at lockout | 15 or 90 sec. max., as ordered | Ignition trial follows prepurge; spark on until pilot lightoff or lockout; pilot valve closes on lockout. |

1. If established flame is lost, all models restart ignition trial.

PLANNING THE INSTALLATION

Intermittent pilot systems are used on a wide variety of central heating equipment and on heating appliances such as commercial cookers, agricultural equipment, industrial heating equipment, and pool heaters. Some of these applications may make heavy demands on the controls, either because of frequent cycling or because of moisture, corrosive chemicals, dust, or excessive heat in the environment. In these situations, significantly greater cycling rates and closer to year-round use, we recommend monthly checkout because the controls may wear out more quickly.

FREQUENT CYCLING

These controls are designed for use on space heating appliances that typically cycle 3 to 4 times an hour during the heating season and not at all during the cooling season. In applications where water can drip on the controls, in addition, high ambient humidity can cause the gas control to corrode, and finally to fail. Where the appliance is likely to be cleaned with a humid atmosphere, make sure air circulation around the module and gas control is adequate to prevent condensation. It's also important to regularly check out the system. A NEMA 4 enclosure may be needed; see the Electronic Ignition Service Manual, form 70-6604.

HIGH HUMIDITY OR DRIPPING WATER

Over time, dripping water or high ambient humidity can create unwanted electrical paths on the module circuit board, causing the module to fail. Never install an appliance where water can drip on the controls. In addition, high ambient humidity can cause the gas control to corrode, and finally to fail. Where the appliance is likely to be cleaned with a humid atmosphere, make sure air circulation around the module and gas control is adequate to prevent condensation. It's also important to regularly check out the system. A NEMA 4 enclosure may be needed; see the Electronic Ignition Service Manual, form 70-6604.

CORROSIVE CHEMICALS

Corrosive chemicals can also attack the module and gas control and eventually cause a failure. Where chemicals may be used routinely for cleaning, make sure the cleaning solution cannot reach the controls. Where chemicals are likely to be suspended in air, as in industrial and agricultural applications, protect the ignition module from exposure with a NEMA 4 enclosure; see the Electronic Ignition Service Manual, form 70-6604.

DUST OR GREASE ACCUMULATION

Heavy accumulation of dust or grease may cause the controls to malfunction. Where dust or grease may be a problem, provide covers for the module and the gas control that will limit environmental contamination. A NEMA 4 enclosure is recommended for the ignition module; see the Electronic Ignition Service Manual, form 70-6604.

HEAT

The controls can be damaged by excessively high temperatures. Make sure the maximum ambient temperature at the control locations will not exceed the rating of the control. If the appliance operates at very high temperatures, insulation, shielding, and air circulation may be necessary to protect the controls. Proper insulation or shielding should be provided by the appliance manufacturer; make sure adequate air circulation is maintained when the appliance is installed.

INSTALLATION

WHEN INSTALLING THIS IGNITION SYSTEM...

1. Read these instructions carefully. Failure to follow them could damage the components or cause a hazardous condition.
2. Check the ratings given in the instructions and on the components to make sure they are suitable for your application.
3. Installer must be a trained, experienced service technician.
4. After installation is complete, check out operation as provided in these instructions.

WARNING

FIRE OR EXPLOSION HAZARD

MAY CAUSE PROPERTY DAMAGE, SEVERE INJURY, OR DEATH

1. The ignition module can malfunction if it gets wet, leading to accumulation of explosive gas.
2. Never install where water can flood, drip, or condense on module.
3. Never try to use a module that has been wet—replace it.
4. Liquified petroleum (LP) gas is heavier than air and will not vent upward naturally.
5. Do not light pilot or operate electric switches, lights, or appliances until you are sure the appliance area is free of gas.

CAUTION

1. Disconnect power supply before beginning wiring to prevent electrical shock or equipment damage.
2. If a new gas control is to be installed, turn off gas supply before starting installation. Conduct Gas Leak Test after gas control manufacturer's instructions after the gas control is installed.
3. If module must be mounted near moisture or water, provide suitable waterproof enclosure.

PERFORM PREINSTALLATION SAFETY INSPECTION

The preinstallation checks described in ANSI Standard Z21.7 on page 21 must be done before the replacement module is installed. If a condition which could result in unsafe operation is detected, the appliance should be shut off and the owner be advised of the unsafe condition. Any potentially unsafe condition must be corrected before proceeding with the installation.

MOUNT IGNITION MODULE

Select a location close enough to the burner to allow a short (3 ft. [0.9 m] max.) direct cable route to the igniter. Ambient temperature at the module must be within the range listed under APPLICATION, page 1. The module must be protected from water, moisture, corrosive chemicals, and excessive dust and grease. We recommend mounting the module with the terminals down to protect them from dripping water and dust. It can also be mounted with the terminals on either side. DO NOT MOUNT with terminals pointing up. Refer to Fig. 1 for mounting recommendations. Fasten securely with four No. 6-32 machine or No. 8 sheetmetal screws (S8610 and S8670 mounting hole pattern is the same as the S86 and S89 mounting hole pattern).
To connect the D80B, follow the wiring diagrams supplied with the vent damper or see Fig. 8 for typical connections.

Connect Ignition Cable

Use Honeywell ignition cable or construct an ignition cable that conforms to suitable national standards such as Underwriters Laboratories Inc. See Tables 2 and 3.

NOTE: When using an S8610 or S8670 to replace an S86, use the enclosed adapter to convert the S86 ignition cable to an S8610 ignition cable. Then, install adapter and cable to the S8610 ignition module.

TABLE 2—HONEYWELL PREASSEMBLED IGNITION CABLES (UL Style 3257).

<table>
<thead>
<tr>
<th>CABLE TYPE</th>
<th>VOLTAGE RATING (rms)</th>
<th>TEMPERATURE RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL Style 3217</td>
<td>10,000</td>
<td>C 150 F 302</td>
</tr>
<tr>
<td>UL Style 3257</td>
<td>10,000</td>
<td>C 250 F 484</td>
</tr>
</tbody>
</table>

Connect Ignition Module

1. Connect remaining system components to the ignition module terminals as shown in the appropriate wiring diagram, Figs. 2 through 11.
 - Fig. 2 is a basic circuit for a heating only atmospheric burner with S8610F,H or S8670D.
 - Fig. 3 shows S8610F,H with vent damper plug in a heating only atmospheric burner system with D80D Vent Damper. Never use a vent damper in an LP gas system or in a fan-assisted combustion system.
 - Figs. 4 and 5 show S8610A,B with separate sensor and igniter, with and without the D80D Vent Damper.
 - Figs. 6 through 11 show S8610F,H and S8670D in a variety of systems with alternate connections for modules with vent damper plug. Remember, however, that a vent damper should not be used in an LP gas system and that the vent damper plug must not be removed except to connect the module to a D80D with the plug-in cable. S8610A,B can be substituted in these drawings by simply connecting the igniter and sensor as shown in Figs. 4 and 5.

2. Refer to heating appliance manufacturer’s instructions for wiring auxiliary controls.

3. Adjust thermostat heat anticipator to match system current draw. The current draw equals the total current required for the ignition module (0.2 A) plus the gas control and any other auxiliary equipment in the control circuit.

Connect Gas Control

Use No. 18 gauge solid or stranded wire. Use 1/4 in. female quick-connects for module connections. Connect to gas control terminals as shown in wiring diagrams, using terminals appropriate to the gas control.

Ground Control System

The igniter, flame sensor, and ignition module must share a common ground with the main burner. Use thermoplastic insulated wire with a minimum rating of 105°C [221°F] for the ground wire; asbestos insulation is not acceptable. If necessary, use a shield to protect the wire from radiant heat generated by the burner. Connect the ground wire as follows:

1. Fit one end of the ground wire with a female 1/4 in. quick-connect terminal and connect it to the male quick-connect GND(BURNER) terminal on the ignition module.
2. Strip the other end of the wire and fasten it under the pilot burner mounting bracket, and a. The pilot burner mounting bracket, and b. The GND(BURNER) terminal on the ignition module.
3. Make sure the transformer has adequate VA. The ignition module requires at least 0.2 A at 24 Vac. Add the current draws of all other devices in the control circuit, including the pilot and main valves in the gas control, and multiply by 24 to determine the total VA requirement of these components. Add this total to 4.8 VA (for the ignition module). The result is the minimum transformer VA rating. Use a Class II transformer if replacement is required.

To connect the D80B, follow the wiring diagrams supplied with the vent damper or see Fig. 8 for typical connections.

Connect Ignition Module

1. Connect remaining system components to the ignition module terminals as shown in the appropriate wiring diagram, Figs. 2 through 11.
 - Fig. 2 is a basic circuit for a heating only atmospheric burner with S8610F,H or S8670D.
 - Fig. 3 shows S8610F,H with vent damper plug in a heating only atmospheric burner system with D80D Vent Damper. Never use a vent damper in an LP gas system or in a fan-assisted combustion system.
 - Figs. 4 and 5 show S8610A,B with separate sensor and igniter, with and without the D80D Vent Damper.
 - Figs. 6 through 11 show S8610F,H and S8670D in a variety of systems with alternate connections for modules with vent damper plug. Remember, however, that a vent damper should not be used in an LP gas system and that the vent damper plug must not be removed except to connect the module to a D80D with the plug-in cable. S8610A,B can be substituted in these drawings by simply connecting the igniter and sensor as shown in Figs. 4 and 5.

2. Refer to heating appliance manufacturer’s instructions for wiring auxiliary controls.

3. Adjust thermostat heat anticipator to match system current draw. The current draw equals the total current required for the ignition module (0.2 A) plus the gas control and any other auxiliary equipment in the control circuit.

Connect Gas Control

Use No. 18 gauge solid or stranded wire. Use 1/4 in. female quick-connects for module connections. Connect to gas control terminals as shown in wiring diagrams, using terminals appropriate to the gas control.

Ground Control System

The igniter, flame sensor, and ignition module must share a common ground with the main burner. Use thermoplastic insulated wire with a minimum rating of 105°C [221°F] for the ground wire; asbestos insulation is not acceptable. If necessary, use a shield to protect the wire from radiant heat generated by the burner. Connect the ground wire as follows:

1. Fit one end of the ground wire with a female 1/4 in. quick-connect terminal and connect it to the male quick-connect GND(BURNER) terminal on the ignition module.
2. Strip the other end of the wire and fasten it under the pilot burner mounting bracket, and a. The pilot burner mounting bracket, and b. The GND(BURNER) terminal on the ignition module.
3. Make sure the transformer has adequate VA. The ignition module requires at least 0.2 A at 24 Vac. Add the current draws of all other devices in the control circuit, including the pilot and main valves in the gas control, and multiply by 24 to determine the total VA requirement of these components. Add this total to 4.8 VA (for the ignition module). The result is the minimum transformer VA rating. Use a Class II transformer if replacement is required.
TABLE 4—TERMINAL CROSS REFERENCE

<table>
<thead>
<tr>
<th>TERMINAL ON OLD MODULE</th>
<th>TERMINAL ON NEW MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 V (1)</td>
<td>24 V (GND)</td>
</tr>
<tr>
<td>TH-W</td>
<td>24 V</td>
</tr>
<tr>
<td>MV</td>
<td>MV</td>
</tr>
<tr>
<td>MV/PV</td>
<td>MV/PV</td>
</tr>
<tr>
<td>PV</td>
<td>PV</td>
</tr>
<tr>
<td>GND (Burner)</td>
<td>GND (Burner)</td>
</tr>
</tbody>
</table>

REPLACING MODULE WITH TH-R, TH-W TERMINALS
On modules that do not have a vent damper plug, the thermostat must be connected between the transformer and the 24V terminal on the module. To change out a module with TH-R, TH-W terminals:
1. Remove the wires from the 25V(2) and TH-R terminals on the old module. Connect these two wires with a solderless connector.
2. Tag and remove the remaining wires from the old module.
3. Remove the old module and mount the new one in the same location.
4. Reconnect the remaining wires as shown in Table 4.
5. Increase the thermostat anticipator setting by 0.2 A.

Fig. 2—S8610F,H; S8670D in a heating system with an atmospheric burner.

Fig. 3—S8610F,H with a vent damper plug in a heating system with an atmospheric burner and a D80D Vent Damper.

Fig. 4—S8610A,B in a heating system with an atmospheric burner.
Fig. 5—S8610A,B with vent damper plug in an atmospheric burner heating system with a D80D Vent Damper.

Fig. 6—S8610F,H; S8670D in a heating system with power-assisted combustion.

Fig. 7—S8610F,H; S8670D in a heating system with a two-stage gas control and power-assisted combustion.
Fig. 8—S8610F,H; S8670D in a heating system with an atmospheric burner and a D80B Vent Damper.

Fig. 9—S8610F,H; S8670D in a heating-cooling system with power-assisted combustion.

POWER SUPPLY: PROVIDE DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED.

ALTERNATE LIMIT CONTROLLER LOCATION.

MAXIMUM CABLE LENGTH 3 ft [0.9 m].

CONTROLS IN 24 V CIRCUIT MUST NOT BE IN GROUND LEG TO TRANSFORMER.

FOR MODULE WITH TH-W TERMINAL AND VENT DAMPER PLUG, CONNECT TO TH-W. LEAVE 24 V OPEN. DO NOT REMOVE VENT DAMPER PLUG.

COLORS REFER TO THE D80B WIRE HARNESS, IF USED.
Fig. 10—S8610F,H; S8670D in a hydronic heating system with a D80D Vent Damper.

Fig. 11—S8610F,H; S8670D in a commercial water heater control system.
STEP 3: Reset the Module.
- Turn the thermostat to its lowest setting.
- Wait one minute.
- As you do Steps 4 and 5, watch for points where operation deviates from normal. Refer to Troubleshooting Chart to correct problem.

STEP 4: Check Safety Shutoff Operation.
This step applies to lockout and continuous retry modules only.
- Turn gas supply off.
- Set thermostat or controller above room temperature to call for heat.
- Watch for spark at pilot burner either immediately or following prepurge. See device label.
- Time spark from start to shutoff. See device label. Ignition sequence should start again followed by shutoff after 90 seconds maximum.
- Open manual gas control knob and make sure no gas is flowing to pilot or main burner.
- Set thermostat below room temperature and wait one minute before continuing.

STEP 5: Check Normal Operation.
- Set thermostat or controller above room temperature to call for heat.
- Make sure pilot lights smoothly when gas reaches the pilot burner.
- Make sure main burner lights smoothly without flashback.
- Make sure burner operates smoothly without floating, lifting, or flame rollout to the furnace vestibule or heat buildup in the vestibule.
- If gas line has been disturbed, complete gas leak test.

GAS LEAK TEST: Paint gas control gasket edges and all pipe connections downstream of gas control, including pilot tubing connections, with rich soap and water solution. Bubbles indicate gas leaks. Tighten joints and screws or replace component to stop gas leak. Recheck with soap and water solution.

WARNING
FIRE OR EXPLOSION HAZARD
MAY CAUSE PROPERTY DAMAGE, SEVERE INJURY, OR DEATH
1. If you smell gas or suspect a gas leak, turn off gas at manual service valve and evacuate the building. Do not try to light any appliance, do not touch any electrical switch or telephone in the building until you are sure no spilled gas remains.
2. Gas leak test must be done as described in Steps 1 and 5 below on initial installation and any time work is done involving the gas piping.

STEP 1: Perform Visual Inspection.
- With power off, make sure all wiring connections are clean and tight.
- Turn on power to appliance and ignition module.
- Open manual shutoff valves in the gas line to the appliance.
- Do gas leak test ahead of gas control if piping has been disturbed.

GAS LEAK TEST: Paint gas control gasket edges and all pipe connections downstream of gas control, including pilot tubing connections, with rich soap and water solution. Bubbles indicate gas leaks. Tighten joints and screws or replace component to stop gas leak. Recheck with soap and water solution.

STEP 2: Review Normal Operating Sequence and Module Specifications.
- See OPERATION, page 13, and APPLICATION, page 1.

Module operation can be conveniently divided into two phases for S8610 and three for S8670. The phases are:
- Prepurge (S8670 only)
- Trial for ignition (all models)
- Main burner operation (all models)

Figs. 12 and 13 summarize the normal operating sequences of the modules.
TRIAL FOR IGNITION

Pilot Ignition
Following preparge timing (S8670), or on the call for heat (S8610), the module energizes the first main valve operator. The first main valve opens, which allows gas to flow to the pilot burner. At the same time, the electronic spark generator in the module produces an over 10,000 volt spark pulse output. The voltage generates a spark at the igniter (S8610A,B) or igniter-sensor (S8610F,H;S8670) that lights the pilot.

If the pilot does not light, or the pilot flame current is not at least 1.0 mA and steady, the module will energize the second (main) valve and the main burner will not light. S8610A,F will continue to spark as long as the thermostat calls for heat, or until the pilot lights.

Safety Lockout (S8610B,H; S8670D)
These modules provide 100 percent shut off and safety lockout. A timer in these models starts timing the moment the trial for ignition starts. Ignition spark continues only until the timed trial for ignition period ends. Then the module goes into safety lockout. Lockout de-energizes the first main valve operator and closes the first main (pilot) valve in the gas control. Stopping pilot gas flow. The control system must be reset by setting the thermostat below room temperature for one minute or by turning off power to the module for one minute.

MAIN BURNER OPERATION
When the pilot flame is established, a flame rectification circuit is completed between the sensor and burner ground. The flame sensing circuit in the module detects the flame current, shuts off the spark generator, and energizes the second main valve operator. The second main valve opens and gas flows to the main burner, where it is ignited by the pilot burner. On lockout models, the flame current also holds the safety lockout timer in the reset (normal) operating condition. When the call for heat ends, both valve operators are de-energized, and both valves in the gas control close.

TROUBLESHOOTING

1. The following service procedures are provided as a general guide. Follow appliance manufacturer’s service instructions if available.

2. On lockout and retry models, meter readings between gas control and ignition module must be taken within the trial for ignition period. Once the ignition module shuts off, lockout models must be reset by setting the thermostat down for at least one minute before continuing. On retry models, wait for retry or reset at the thermostat.

3. If any component does not function properly, make sure it is correctly installed and wired before replacing it.

4. The ignition module cannot be repaired. If it malfunctions, it must be replaced.

5. Only trained, experienced service technicians should service intermittent pilot systems.

Performance the checkout on page 12 as the first step in troubleshooting. Then check the appropriate troubleshooting guide (Fig. 15 or 16) and the schematic diagram (Fig. 17 or 18) to pinpoint the cause of the problem. If troubleshooting indicates an ignition problem, see Igniton System Checks below to isolate and correct the problem.

Following troubleshooting, perform the checkout procedure (page 12) again to be sure system is operating normally.

IGNITION SYSTEM CHECKS

STEP 1: Check ignition cable. Make sure:
- Ignition cable does not run in contact with any metal surfaces.
- Ignition cable is no more than 36 inches [0.9 meters] long.
- Connections to the ignition module and to the igniter or igniter-sensor are clean and tight.
- Ignition cable provides good electrical continuity.

STEP 2: Check ignition system grounding. Nuisance shut-downs are sometimes caused by a poor or erratic ground.
- A common ground, usually supplied by the pilot burner bracket, is required for the module and the pilot burner/igniter-sensor.
- Check for good metal-to-metal contact between the pilot burner bracket and the main burner.
- Check the ground lead from the GND (BURNER) terminal on the module to the pilot burner. Make sure connections are clean and tight. If the wire is damaged or deteriorated, replace it with No. 14 through No. 18 gauge, moisture-resistant, thermoplastic insulated wire with 105° C [221° F] minimum rating.
- Check the ceramic flame rod insulator for cracks or evidence of exposure to extreme heat, which can permit leakage to ground. Replace pilot burner/igniter-sensor and provide shield if necessary.
- If flame rod or bracket are bent out of position, restore to correct position.

STEP 3: Check spark ignition circuit. You will need a short jumper wire made from ignition cable or other heavily insulated wire.
- Close the manual gas valve.
- Disconnect the ignition cable at the SPARK terminal on the module.

STEP 4: Check pilot and main burner igniters.
- Set the thermostat to call for heat.
- Watch the pilot burner during the ignition sequence. See it:
 - Ignition spark continues after the pilot is lit.
 - The pilot lights and the spark stops, but main burner does not light.
 - S8610B,H; S8670D only: The pilot lights, the spark stops and main burner lights, but the system shuts down.
 - If so, ensure adequate flame current as follows.
 - Turn off furnace at circuit breaker or fuse box.
 - Clean the flame rod with emery cloth.

When performing the following steps, do not touch stripped end of jumper or SPARK terminal. The ignition circuit generates over 10,000 volts and electrical shock can result.

Check external fuse, if provided. Verify power at module input terminal. Replace module if fuse and power okay.

ARC LENGTH ACTION
No arc or arc less than 1/8 inch [3 mm]
Check external fuse, r,provided. Verify power at module input terminal.
Replace module if fuse and power okay.

Arc 1/8 inch [3 mm] or longer
Voltage output is okay.

STEP 1: Check ignition cable.
- Ignition cable does not run in contact with any metal surfaces.
- Ignition cable is no more than 36 inches [0.9 meters] long.
- Connections to the ignition module and to the igniter or igniter-sensor are clean and tight.
- Ignition cable provides good electrical continuity.

STEP 2: Check ignition system grounding. Nuisance shut-downs are sometimes caused by a poor or erratic ground.
- A common ground, usually supplied by the pilot burner bracket, is required for the module and the pilot burner/igniter-sensor.
- Check for good metal-to-metal contact between the pilot burner bracket and the main burner.
- Check the ground lead from the GND (BURNER) terminal on the module to the pilot burner. Make sure connections are clean and tight. If the wire is damaged or deteriorated, replace it with No. 14 through No. 18 gauge, moisture-resistant, thermoplastic insulated wire with 105° C [221° F] minimum rating.
- Check the ceramic flame rod insulator for cracks or evidence of exposure to extreme heat, which can permit leakage to ground. Replace pilot burner/igniter-sensor and provide shield if necessary.
- If flame rod or bracket are bent out of position, restore to correct position.

STEP 3: Check spark ignition circuit. You will need a short jumper wire made from ignition cable or other heavily insulated wire.
- Close the manual gas valve.
- Disconnect the ignition cable at the SPARK terminal on the module.

When performing the following steps, do not touch stripped end of jumper or SPARK terminal. The ignition circuit generates over 10,000 volts and electrical shock can result.

Check external fuse, if provided. Verify power at module input terminal. Replace module if fuse and power okay.

ARC LENGTH ACTION
No arc or arc less than 1/8 inch [3 mm]
Check external fuse, r,provided. Verify power at module input terminal.
Replace module if fuse and power okay.

Arc 1/8 inch [3 mm] or longer
Voltage output is okay.

Fig. 13—S8670 normal operating sequence.

Fig. 14—Examples of unsatisfactory pilot flames.
START

NOTE: Before troubleshooting, familiarize yourself with the startup and checkout procedure.

- Pull ignition lead and check spark at S8670.
- 69-0523
- Adjustment screw on the gas control clockwise to decrease or counterclockwise to increase pilot flame. Following adjustment, always replace pilot adjustment cover screw and tighten firmly to assure proper gas control operation.
- Set thermostat below room temperature to end call for heat.
- Recheck ignition sequence as follows.
 - Reconnect main valve wire.
 - Set thermostat to call for heat.
 - Watch ignition sequence at burner.
 - If spark still doesn’t stop after pilot lights, replace ignition module.
 - If main burner doesn’t light or if main burner lights but system locks out, check, module, ground wire, and gas control as described in appropriate troubleshooting chart, Fig. 15 or 16.
- System runs until call for heat ends.
- System shuts off?
 - Check continuity of ignition cable and ground wire.
 - Check electrical connections between module and gas control. If okay, replace gas control or gas control operator.
- Main burner lights?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- System runs until call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- Call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- System shuts off?
 - Check continuity of ignition cable and ground wire.
 - Check electrical connections between module and gas control. If okay, replace gas control or gas control operator.
- System runs until call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.

NOTE: Before troubleshooting, familiarize yourself with the startup and checkout procedure.

- Check line voltage power, low voltage transformer, limit controller, thermostat and wiring. Also, check and verifying pilot on combustion air blower system. If a 24 V and that vent damper (if used) is open and switch is made.
- Check for cracked ceramic insulator, which can cause short to ground, and replace igniter-sensor if necessary.
- At the gas control, disconnect main valve wire from the TH or MV terminal.
- Turn on power and set thermostat to call for heat. The pilot should light but the main burner will remain off because the main valve actuator is disconnected.
- Check the pilot flame. Make sure it is blue, steady, and 3/8 to 1/2 inch (10 to 13 mm) of the flame rod. See Fig. 14 for possible flame problems and their causes.
- If necessary, adjust pilot flame by turning the pilot adjustment screw on the gas control clockwise to decrease or counterclockwise to increase pilot flame. Following adjustment, always replace pilot adjustment cover screw and tighten firmly to assure proper gas control operation.
- Set thermostat below room temperature to end call for heat.
- Recheck ignition sequence as follows.
 - Reconnect main valve wire.
 - Set thermostat to call for heat.
 - Watch ignition sequence at burner.
 - If spark still doesn’t stop after pilot lights, replace ignition module.
 - If main burner doesn’t light or if main burner lights but system locks out, check, module, ground wire, and gas control as described in appropriate troubleshooting chart, Fig. 15 or 16.
- System runs until call for heat ends.
- System shuts off?
 - Check continuity of ignition cable and ground wire.
 - Check electrical connections between module and gas control. If okay, replace gas control or gas control operator.
- System runs until call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- Call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- System shuts off?
 - Check continuity of ignition cable and ground wire.
 - Check electrical connections between module and gas control. If okay, replace gas control or gas control operator.
- System runs until call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- Call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- System shuts off?
 - Check continuity of ignition cable and ground wire.
 - Check electrical connections between module and gas control. If okay, replace gas control or gas control operator.
- System runs until call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- Call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- System shuts off?
 - Check continuity of ignition cable and ground wire.
 - Check electrical connections between module and gas control. If okay, replace gas control or gas control operator.
- System runs until call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- Call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- System shuts off?
 - Check continuity of ignition cable and ground wire.
 - Check electrical connections between module and gas control. If okay, replace gas control or gas control operator.
- System runs until call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- Call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- System shuts off?
 - Check continuity of ignition cable and ground wire.
 - Check electrical connections between module and gas control. If okay, replace gas control or gas control operator.
- System runs until call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- Call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- System shuts off?
 - Check continuity of ignition cable and ground wire.
 - Check electrical connections between module and gas control. If okay, replace gas control or gas control operator.
- System runs until call for heat ends?
 - Check for proper thermostat (controller) operation.
 - Remove MV lead at module. If valve closes, check temperature controller and wiring. If not, replace gas control.
- Call for heat ends? This is the end of the troubleshooting procedure. Repeat procedure until trouble-free operation is obtained.
Fig. 17—Representative schematic for S8610F,H. See Fig. 1 for hookup. S8670 is similar except the timing circuit includes a purge timer. See Fig. 6 for hookup.

Fig. 18—Representative schematic for S8610A,B. See Fig. 3 for hookup.
PROCEDURE FOR INSTALLING AUTOMATIC INTERMITTENT PILOT SYSTEMS

Prior to beginning this procedure, a preliminary examination of the appliance and the automatic intermittent pilot system can be properly applied if the appliance is installed in the same or a similar manner. The procedure should be followed in making the determination of the specific installation. The following steps should be followed in making the determination:

1. Conduct a Gas Leakage Test of the appliance installation.
2. Conduct a Gas Pressure Test of the appliance installation.
3. Determine that the circulating water pumps are in operating condition.
4. Test the pilot safety device (1) to determine if it is operating properly, and (2) for turndown characteristics.
5. Test the limit control operation by blocking the electrical supply to the blower motor and determining that the limit control acts to shut off the main burner gas.
6. Check the heat anticipator in the comfort thermostat instructions.
7. Inspect all gas to the appliance and shut off any shut-off valves to the appliance.
8. Conduct a Gas Leakage Test of the appliance installation.
9. Adjust the automatic intermittent pilot system to match original input as required.
10. Adjust the gas pressure regulator to match original input as required.
11. Test the pilot safety device (1) to determine if it is operating properly, and (2) for turndown characteristics.
12. Test the limit control operation by blocking the electrical supply to the blower motor and determining that the limit control acts to shut off the main burner gas.
13. Sequence the appliance through at least three operating cycles.
14. Approve only to boilers. Check both the limit controller and the gas control for proper operation.
15. Applicable only to boilers. Check all the air and fuel burner(s) and not of the direct vent type. Check all the air and fuel burner(s) and not of the direct vent type. Check all the air and fuel burner(s) and not of the direct vent type. Check all the air and fuel burner(s) and not of the direct vent type.
Q345A, Q348A, Q348B, Q362A, Q373A and Q381A Pilot Burner/Igniter-Sensors

Application

These pilot burner/igniter-sensors provide pilot flame ignition and sensing in intermittent pilot systems. They consist of a target type pilot burner with a combination spark igniter and flame sensor mounted in place of the thermocouple.

Installation

WHEN INSTALLING THIS PRODUCT...
1. Read these instructions carefully. Failure to follow instructions can damage product or cause a hazardous condition.
2. Check ratings given in instructions and on product to make sure product is suitable for your application.
3. Make sure installer is a trained, experienced service technician.
4. After completing installation, use these instructions to check out product operation.

WARNING
FIRE OR EXPLOSION HAZARD CAN CAUSE PROPERTY DAMAGE, SEVERE INJURY, OR DEATH.
Follow these warnings exactly:
1. Disconnect power supply before wiring to prevent electrical shock or equipment damage.
2. To avoid dangerous accumulation of fuel gas, turn off gas supply at appliance service valve before starting installation and perform Gas Leak Test after completion of installation.
3. Do not bend pilot tubing at the control or pilot after compression nut has been tightened. Gas leakage at the connection may result.

Follow appliance manufacturer instructions if available; otherwise, use instructions provided below.

LOCATION
1. Position pilot burner/igniter-sensor for easy access and observation. In replacement applications, replace pilot burner/igniter-sensor with an identical unit and position new pilot burner/igniter-sensor in the same location and orientation as the original one.

2. Mount pilot burner/igniter-sensor on main burner. Mounting surfaces other than the main burner may shift, bend, or warp as furnace expands and contracts while operating. See Fig. 1.
3. Mount pilot burner/igniter-sensor so the pilot flame remains properly positioned with respect to the main burner flame. See Fig. 2.
4. Supply pilot flame with ample air free of combustion products.
5. Do not impinge pilot flame on adjacent parts. Do not impinge main burner flame on pilot burner/igniter-sensor.
6. Do not expose pilot flame to falling scale, which could impair main burner ignition.
7. Do not expose pilot burner/igniter-sensor to main burner rollout while igniting or extinguishing.
8. Do not expose pilot flame to drafts that push or pull pilot flame away from the igniter-sensor.

NOTE: The Q381A Pilot Burner/Igniter-Sensor is for horizontal mounting only. Mounting bracket must remain vertical.

CONNECT PILOT GAS TUBING
1. Cut tubing to desired length and bend as necessary for routing to pilot burner/igniter-sensor. Do not make sharp bends or deform tubing. Do not bend tubing at control after compression nut has been tightened because this can result in gas leakage at connection.
2. Square off and remove burrs from end of tubing.
3. Push tubing into compression nut clearance hole until tubing bottoms.

NOTE: When replacing a control, cut off old compression fitting and replace with new compression fitting provided with new pilot burner. Never use old compression fitting because it may not provide a gas-tight seal. See Fig. 3.

4. While holding tubing all the way in, engage threads and turn until finger tight.
5. Use a wrench, turn compression nut one turn beyond finger tight. Do not overtighten.
6. Connect other end of tubing to gas control according to gas control manufacturer instructions.
7. Use ceramic or plastic standoff insulators as necessary to prevent cable from contacting metal surfaces.

INSTALL BLEED GAS TUBE (optional)
1. Route bleed tube from bleed tap on gas control to pilot burner/igniter-sensor.
2. Square off and remove burrs from end of tubing.
3. Push clip into place. See Fig. 4. Insert bleed gas tube until 3/8 in. (10 mm) to tubing is above pilot burner/igniter-sensor bracket. Tip of bleed gas tube must not extend into pilot flame.

STARTUP AND CHECKOUT

PERFORM GAS LEAK TEST

WARNING
FIRE OR EXPLOSION HAZARD CAN CAUSE PROPERTY DAMAGE, SEVERE INJURY, OR DEATH.
Check for gas leaks with soap and water solution any time work is done on a gas system.

Gas Leak Test:
1. Ensure that gas supply is turned on at the appliance service valve.
2. Paint pipe connections upstream of pilot burner with rich soap and water solution. Bubbles indicate gas leak.
3. If leak is detected, tighten pipe connections.
4. Set thermostat to call for heat to light main burner.
5. With main burner in operation, paint pipe joints (including adapters) and gas control inlet and outlet with rich soap and water solution.
6. If another leak is detected, tighten adapter screws, joints, and pipe connections.
7. Replace part if leak cannot be stopped.
ADJUST PILOT FLAME

The pilot flame should envelop 3/8 to 1/2 in. [10 to 13 mm] of the igniter-sensor tip. See Fig. 5. To adjust pilot flame:
1. Turn off system by setting thermostat below temperature to call for heat.
2. Disconnect lead to MV terminal on gas control.
3. Light pilot by setting thermostat to call for heat.
4. Remove pilot adjustment cover screw from gas control.
5. Turn inner pilot adjustment screw clockwise to decrease or counterclockwise to increase pilot flame.
6. Always replace pilot adjustment cover screw and tighten firmly after completing adjustment to assure proper operation.

Set the thermostat to call for heat.
Watch the pilot burner during the ignition sequence. See if:
- Ignition spark continues after the pilot is lit.
- The pilot lights and the spark stops, but main burner does not light.
- SS600BJ; S86H only: Pilot lights; the spark stops and main burner lights, but the system locks out.
- If so, assure adequate flame current as follows:
 - Turn off furnace at circuit breaker or fuse box.
 - Clean the flame rod with emery cloth.
 - Make sure electrical connections are clean and tight.
 - At the gas control, disconnect main valve wire from the TH or MV terminal.
 - Turn on power and set thermostat to call for heat.
 - Check for cracked ceramic insulator, which can cause short to ground, and replace pilot/igniter-sensor if necessary.
 - Check for: a. If insulator is cracked, replace pilot burner/igniter-sensor.
 - a. If necessary, adjust pilot flame by turning the pilot adjustment screw on the gas control clockwise to decrease or counterclockwise to increase pilot flame. After adjustment, always replace pilot adjustment cover screw and tighten firmly to assure proper gas control operation.
 - Set thermostat below room temperature to end call for heat.

CHECK IGNITION CABLE
1. Assure that ignition cable is not in contact with metal surfaces.
2. Assure that ignition cable is not more than 3 feet [1 m] long.
3. Assure connections to the ignition module stud terminal and the igniter-sensor are clean and tight.
4. Check electrical continuity of ignition module.

CHECK GROUNDING
1. If ground is poor or erratic, safety shutdown will occur. Therefore, if nuisance shutdowns are reported, check the ground precautions in Wire Igniter-Sensor section.
2. If leadwire is damaged or deteriorated, use no. 14 to 18 gauge, moisture-resistant, thermoplastic, insulated wire with 221°F [105°C] minimum rating as replacement.
3. Excessive temperature at the ceramic flame rod insulator will permit electrical leakage to ground.
 a. If bracket is bent, bend it back to correct position.
 b. If insulator is cracked, replace pilot burner/igniter-sensor.

TEST SAFETY LOCKOUT
Refer to appliance manufacturer instructions to test for proper safety lockout times.
Listings/Approvals:
- UL Guide (NKPZ) for industrial control equipment per UL Standard 508 Industrial Control Equipment
- UL Guide (MFHX) for heating/cooling appliance switch per UL Standard 353 Limit Controls
- CSA Class (321106) for industrial control equipment per CSA Standard C22.2 No. 14-M Industrial Control Equipment

Maximum Service Pressure: 250 PSI

Enclosure:
- NEMA Type 1 (For indoor use only)
- Formed sheet metal with powdercoat finish.
- Not for use in hazardous locations.

Contacts:
- IFS01: One SPDT (Form C) switch
- IFS02: Two sets of SPDT (Form C) switches to provide versatility in wiring two separate circuits.

Motor Ratings:
- 120VAC: 240VAC
- Horsepower: 1/8 1/4
- AC L.R.A.: 3.8 2.9
- AC F.L.A.: 22.8 17.4

Pilot Duty Rating:
- IFS01: 125 VA 120/240 VAC
- IFS02: 22 Amps at 125/250VAC
- Motor Ratings: 120VAC 240VAC
- Horsepower: 1/2 1
- AC L.R.A.: 58.8 48.0
- AC F.L.A.: 9.8 8.0

Ambient Temperature Range:
- 32°F/176°F (0°C/80°C)

Pipe Connections:
- 1" NPT Brass on models IFSxxB
- 1" NPT 316 Stainless Steel on models IFSxxS

Conduit Entrance: Two openings for 1/2" conduit

Usage: For pipe sizes 1" - 8"

Caution: This device is not intended for applications in explosive environments.

Note: IFSW Series available with NEMA 4 enclosure for outdoor use. (See bulletins #102-026 & #102-027 or Catalog 100-8.2).

Sensitivity Adjustment Note:
- Turn screw clockwise to increase the flow rate required to activate the switch.
- Turn screw counter-clockwise to decrease the flow rate required to activate the switch.

MOUNTING AND INSTALLATION

The Model IFS may be mounted in a horizontal pipe line or a vertical pipe line with upward liquid flow. It is not recommended for installations where flow is downward. When mounted in a horizontal pipe line the switch will trip at a lower flow rate than shown in Fig. 7.

Mount the device in a section of pipe where there is a straight run of at least 5 pipe diameters on each side of the flow switch. Do not locate adjacent to valves, elbows or orifices. The switch should be mounted so the terminals or wire leads are easily accessible for wiring.

IFS models with flexible paddles are furnished with 4 paddles. Rigid paddle models are furnished with 2 paddles. For pipe sizes 1", 2", 3" or 6", use the paddles provided. Intermediate sizes may be trimmed from the appropriate paddle using the paddle template in Fig. 5. The paddle must not touch the inside of the pipe or bind in any way. Paddles smaller than the actual pipe size should be used for added support and higher sensitivity, see Fig. 3. The paddles must be properly attached and the screw that holds the paddle must be securely tightened.

For a 1" pipe application mount in a standard 1" x 1" x 1" tee. Use a reducing tee for larger sizes of pipe to keep flow switch close to pipe and provide adequate paddle length in the flow stream.

Example: Use a 2" x 2" x 1" tee for 2" pipe. A welddiot may also be used. Screw the device into the tee fitting as shown in Fig. 4. The flat of the paddle must be at a right angle to the flow. The arrow on the side of the bushing must point in the direction of flow, see Fig. 1.

GENERAL

The Model IFS is a flow switch used in liquid flow lines carrying water or any fluid not harmful to brass, stainless steel, EPDM or fluoro silicone, and not classified as a hazardous fluid. This switch can serve as a way to start and stop electrically operated equipment when a flow or no flow condition occurs in a variety of applications. This device is designed for use only as an operating control. Where an operating control failure would result in personal injury and/or loss of property, it is the responsibility of the installer to add devices (safety, limit controls) that protect against, or systems (alarm, supervisory systems) that warn of control failure.
FIG. 3
Typical paddle arrangement for 6" to 8" pipe, using smaller flexible paddles for added support and higher sensitivity.

FIG. 4
FIG. 5
Use the drawing at right as a template and trim at the dotted arc when trimming the appropriate paddle for intermediate pipe sizes.

CAUTION:
The paddle must not touch the inside of the pipe or bind in any way.

NOTE:
When installing rigid paddles, do not stack paddles. Only install ONE paddle that best fits the pipe.

WIRING
Use properly rated temperature supply wire for the anticipated service temperature.

Make all electrical connections in accordance with the National Electrical Code and local regulations.

See Figs. 6A and 6B for diagrams illustrating switch action.

ADJUSTMENT
Remove switch cover and turn the sensitivity adjusting screw clockwise to increase the flow rate required to actuate the switch. Turn the sensitivity adjusting screw counter-clockwise to decrease the flow rate required to actuate the switch. (See Fig. 1.) Be sure to replace the cover upon completion of the installation and adjustment.

CAUTION:
Check the installation for "no-flow" switch operation. Make appropriate adjustments for the sensitivity adjustments crew to be sure the switch restores fully at the desired flow rate.

IFS Ordering

NOTES:
1. Typical flow rates for 1" to 1 1/2" pipe sizes are averages which may vary approximately ±1 GPM with the use of a bronze reducing tee.

2. Typical flow rates for 2" to 8" pipe sizes are averages which may vary ±10% with the use of a 1" weldolet.

(*) Flow rates for these sizes are calculated.

Do it Once. Do it Right.

TACO, INC.,
1160 Cranston Street, Cranston, RI 02920 Telephone: (401) 942-8000 FAX: (401) 942-2360.

TACO (Canada), Ltd.,
6180 Ordan Drive, Mississauga, Ontario L5T 2B3. Telephone: 905/564-9422. FAX: 905/564-9436.

Manufactured by
POTTER ELECTRIC SIGNAL CO.,
St. Louis, MO

Visit our web site at: http://www.taco-hvac.com

Printed in USA
Copyright 2002 TACO, Inc.
Unitrol 7000

The Unitrol 7000 GO (Gas-Operated) series controls are bleed gas controlled diaphragm valves. The diaphragm valve provides ON and OFF operation in response to the opening and closing of the external bleed line by a thermostatic bleed line valve, such as Invensys' Model GS depicted in the schematic drawing.

The Gas-Operated models of the Unitrol 7000 combine a manual main and pilot gas valve, a separate automatic safety pilot valve, pilot adjustment valve, pilot and bleed gas filtration, and a diaphragm valve as described above. The regulated models of the Unitrol 7000 series have the additional feature of “straight line” gas pressure regulation.

PILOT BURNER ADJUSTMENT
1. Remove the pilot adjustment cap (do not lose the gasket).
2. Adjust the pilot key to provide proper flame.
3. Re-assemble the gasket and cap.
4. Leak test per warning note 13.

WARNING!
- Installation and servicing of gas appliances and controls must only be performed by qualified personnel. After installation or servicing, test manual valve, operating valves, pressure regulation, and automatic safety shut off valve for proper operation.
- DO NOT use this control if it has been exposed to water corrosion through immersion, dripping, etc. It may be damaged and must be replaced.
- Shut off gas and electricity before starting installation or service. Turn back on to test or operate.
- DO NOT connect appliance before pressure testing gas piping. Damage to gas valve may result.
- DO NOT insert any object other than suitable pipe or tubing in the inlet or outlet of the gas valve. Internal damage may occur and result in a hazardous condition.
- DO NOT grip gas valve body with a pipe wrench or vise. Damage may result causing gas leakage. Use inlet or outlet bosses or a special body wrench.
- DO NOT allow gas leakage when the main burner is lit. The thermostat or the fuse will be damaged.
- DO NOT allow any flame to impinge on the regulator vent tubing if supplied. It may fog and cause gas valve malfunction.
- DO NOT use the gas cook to adjust gas flow.
- In case of failure of main burner to shut off, turn off gas supply. Allow fan, if so equipped, to run until heating unit has cooled off.
- Keep all combustible materials away from gas appliances. DO NOT allow lint or dust to collect in burner area.
- Dials must only be operated by hand. Never use pliers, wrench or other tools to turn dials.
- Leak test with soap solution after installation or service with the main burner on. Coat pipe and tubing joints, gaskets, etc. Bubbles indicate leaks.
Aquastat® Controllers

APPLICATION
These remote bulb (see Fig. 7), immersion type (see Fig. 1) controllers operate in response to temperature changes in hydronic heating systems and other heated liquids.

INSTALLATION INSTRUCTIONS

INSTALLATION

When Installing this Product...
1. Read these instructions carefully. Failure to follow them could damage the product or cause a hazardous condition.
2. Check the ratings given in the instructions and on the product to make sure the product is suitable for your application.
3. Installer must be a trained, experienced service technician.
4. After installation is complete, check out product operation as provided in these instructions.

CAUTION
Disconnect power supply before installation to prevent electrical shock or equipment damage.

Depending on model and installation requirements, install the temperature sensing bulb either in an immersion well (see Fig. 2) that extends into the boiler or tank, or directly immerse the temperature sensing bulb in the liquid. For installations using a well, secure the bulb with a bulb compression fitting (see Fig. 3) or a capillary compression fitting (see Fig. 4). Order the well or the fitting separately.

The boiler manufacturer generally provides a tapping for inserting the Aquastat® controller sensing element. Locate this tapping in a representative point where typical water temperature can be measured. Never locate the bulb or protecting immersion well close to a hot or cold water inlet or steam coil. Install the bulb in the supply line of an indirect water heater, in the indirect water heater itself, or in the feed riser about 6 in. (152 mm) above the boiler. If the riser is valved, install the bulb between the boiler and the valve.

The Aquastat® controller can be remotely mounted—either vertically on a wall or panel, or directly on the boiler, tank, or vessel.

Mounting the Case
1. Remove the cover and fasten the case to the wall or panel using the three mounting holes in the back of the case.
2. Screw the well into the boiler, tank or pipe tapping.
3. Install the bulb into the well, pushing the tubing until the bulb bottoms in the well.
4. Tighten the draw nut so the retainer clamp is firmly attached to the well spud and the tubing is held by the clamp.

Mounting with Bulb Compression Fitting
1. Screw the fitting into the boiler or piping tapping.
2. Slide sealing washer onto the bulb.
3. Insert the bulb into the fitting until bulb bottoms.
4. Slide split sleeve into fitting.
5. Place clamps A and B on assembly so that sleeve is drawn into fitting when screws are tightened.

Mounting with Capillary Compression Fitting
1. Screw fitting into the boiler or pipe tapping.
2. Place packing nut on tubing.
3. Attach the retainer clamp to the end of the well spud. Loosen the draw nut and spread the jaws of the clamp with the screwdriver if necessary.
4. With the retainer clamp attached to the well spud (be sure jaws of clamp hook over ridge at end of the spud as shown at point A), adjust tubing to fit through retainer clamp groove, as shown at point B.
5. Tighten the draw nut so the retainer clamp is firmly attached to the well spud and the tubing is held by the clamp.

Mounting with Immersion Well
Fit well, if used, to sensing bulb snugly for good thermal response. Insert bulb until it rests against the bottom of the well, then hold it there while tightening the tubing clamp.

WIRING
All wiring must agree with applicable codes and ordinances and regulations in such matters as wire size, type of insulation, and enclosure. The controllers are provided with conduit knockouts in the top and bottom of case. Refer to Fig. 5 or 6 for a typical connection diagram.
Adjusting L6008G Interstage Differential

The L6008G Controller has an adjustable interstage differential. The setpoint adjustment knob determines the temperature at which the right switch operates. The left switch can be adjusted to operate from 3° to 10°F (1.7° to 5.6°C) above the point of operation of the right switch. The interstage differential is adjusted by turning the star wheel with a narrow screwdriver inserted into the rectangular hole in the chassis. See Fig. 8.

Adjustments

Adjusting Differential

Set the differential to correspond with the boiler manufacturer recommendations. To adjust models with adjustable differential, rotate the wheel on the back of the snap switch, see Fig. 7, until the desired reading is aligned with the V notch in the frame. The wheel provides as adjustment from 5° to 30°F (3° to 17°C). Replace the cover on the Aquastat® controller.

Warning

CAN CAUSE PROPERTY DAMAGE, SEVERE INJURY OR DEATH.

This product is intended for use only in systems with a pressure relief valve. Check to be sure the Aquastat® controller is properly installed and adjusted. Put the system into operation and observe the action of the control through several cycles to make sure that it provides proper control of the system as described in the Operation section. Make any additional adjustments necessary to assure comfort requirements.

Checkout

Fig. 8. Interstage differential adjustment on an L4008L or L6008G.

Fig. 7. Adjusting the differential.

Adjust the control point to correspond with the boiler manufacturer recommendations. To adjust, insert a screwdriver in the slotted screw type head located beneath the window in the cover. Turn the scale to the desired control point.
VR8104, VR8204, and VR8304 Intermittent Pilot Combination Gas Controls

INSTALLATION INSTRUCTIONS

APPLICATION

These intermittent pilot gas controls are used in gas-fired appliances with up to 415 ft³/hr capacity at 1 in. wc pressure drop (8.5 m³/hr at 0.25 kPa) on natural gas. They include safety shutoff, a manual valve, two automatic operators, a pressure regulator and a pilot adjustment.

For CE-approved models, the relevant sections of these instructions and Table 4 are applicable.

Table 1. Valve Capacity

<table>
<thead>
<tr>
<th>Model</th>
<th>Inlet-Outlet (in.)</th>
<th>AGA Certified Capacity for Natural Gas</th>
<th>AGA Certified Minimum Regulation for Natural Gas</th>
<th>AGA Certified Maximum Regulation for Natural Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR8104</td>
<td>1/2 x 1/2</td>
<td>85 ft³/hr 2.3 m³/hr</td>
<td>10² ft³/hr 0.4 m³/hr</td>
<td>120 ft³/hr 3.4 m³/hr</td>
</tr>
<tr>
<td>VR8204</td>
<td></td>
<td>150 ft³/hr 4.2 m³/hr</td>
<td>20² ft³/hr 0.6 m³/hr</td>
<td>200 ft³/hr 5.7 m³/hr</td>
</tr>
<tr>
<td>VR8304</td>
<td></td>
<td>240 ft³/hr 6.8 m³/hr</td>
<td>30² ft³/hr 0.8 m³/hr</td>
<td>340 ft³/hr 9.6 m³/hr</td>
</tr>
<tr>
<td>VR8304²,³</td>
<td>1/2 x 3/4</td>
<td>270 ft³/hr 7.6 m³/hr</td>
<td>80² ft³/hr 1.0 m³/hr</td>
<td>370 ft³/hr 11.8 m³/hr</td>
</tr>
<tr>
<td>VR8304²,³</td>
<td>3/4 x 3/4</td>
<td>300 ft³/hr 8.5 m³/hr</td>
<td>90² ft³/hr 1.2 m³/hr</td>
<td>415 ft³/hr 11.8 m³/hr</td>
</tr>
</tbody>
</table>

a Capacity based on 1000 Btu/hr, 0.64 sp gr natural gas at 1 in. wc pressure drop (37.3 MJ/m³, 0.64 sp gr natural gas at 0.25 kPa pressure drop).
b Capacity is reduced by 5 percent when using an outlet screen.
c Valves are guaranteed at only 77 percent of the rating.
d Minimum regulation for LP gas is 15,000 Btu/hr.
e Minimum regulation for LP gas is 40,000 Btu/hr.
f Minimum regulation for LP gas is 50,000 Btu/hr.

Table 2. Gas Capacity Conversion Factor

<table>
<thead>
<tr>
<th>Gas</th>
<th>Specific Gravity</th>
<th>Multiply Listed Capacity By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufactured</td>
<td>0.60</td>
<td>0.516</td>
</tr>
<tr>
<td>Mixed</td>
<td>0.70</td>
<td>0.765</td>
</tr>
<tr>
<td>Propane</td>
<td>1.53</td>
<td>1.62</td>
</tr>
</tbody>
</table>

CE-Only Models

These gas controls are used in appliances up to 121 kW or 415 kBTUH on natural gas and approved on EN126, which consists of one automatic safety shutoff valve, Class B or C, one servo-operated shutoff valve, Class D, pressure governor, Class C, manually-operated valve, with or without pilot outlet. Only the A, H and U models are available CE-approved.

CAUTION

Equipment Damage Hazard.
Improper use can damage equipment.
Read the instructions before use. This control must be installed in accordance with the rules in force.
SPECIFICATIONS

Body Pattern: Straight through; see Table 1 for inlet and outlet size.

Electrical Ratings:
Voltage and Frequency: 24 Vac, 60 Hz.
Current Draw: 0.5A with both controllers energized.

Capacity: See Table 1.

Conversion: Use conversion factors in Table 2 to convert capacities for other gases.

Regulation Range: See Table 1.

Natural-LP Gas Conversion Kits: See Table 5.

Pipe Adapters:
Angle and straight adapters available for 3/8-, 1/2- and 3/4-in. pipe. See Table 6. Flange kits include one flange, one O-ring and four mounting screws.

Approvals:
American Gas Association Design Certificate: L2025006.
Canadian Gas Association Design Certificate: L2025006.
Australian Gas Association Design Certificate: 4214.
Approved for Delta C applications.

PLANNING THE INSTALLATION

WARNING

Fire Or Explosion Hazard.
Can cause property damage, severe injury or death.
Follow these warnings exactly:
1. Plan the installation as outlined below.
2. Plan for frequent maintenance as described in the Maintenance section.

Water or Steam Cleaning
If a control gets wet, replace it. If the appliance is likely to be cleaned with water or steam, protect (cover) the control and wiring from water or steam flow. Mount the control high enough above the bottom of the cabinet so it does not get wet during normal cleaning procedures.

High Humidity or Dripping Water
Dripping water can cause the control to fail. Never install an appliance where water can drip on the control. In addition, high ambient humidity can cause the control to corrode and fail. If the appliance is in a humid atmosphere, make sure air circulation around the control is adequate to prevent condensation. Also, regularly check out the system.

Corrosive Chemicals
Corrosive chemicals can attack the control, eventually causing a failure. If chemicals are used for routine cleaning, avoid contact with the control. Where chemicals are suspended in air, as in some industrial or agricultural applications, protect the control with an enclosure.

Dust or Grease Accumulation
Heavy accumulations of dust or grease can cause the control to malfunction. Where dust or grease can be a problem, provide covers for the control to limit contamination.

Heat
Excessively high temperatures can damage the control. Make sure the maximum ambient temperature at the control does not exceed the rating of the control. If the appliance operates at very high temperatures, use insulation, shielding, and air circulation, as necessary, to protect the control. Proper insulation or shielding should be provided by the appliance manufacturer; verify proper air circulation is maintained when the appliance is installed.

INSTALLATION

When Installing this Product...
1. Read these instructions carefully. Failure to follow them could damage the product or cause a hazardous condition.
2. Check the ratings given in the instructions and on the appliance manufacturer’s specifications and instructions to assure proper appliance operation as provided in these instructions.
3. Installer must be a trained, experienced service technician.
4. After installation is complete, check out product operation as provided in these instructions.

WARNING

Fire Or Explosion Hazard.
Can cause property damage, severe injury or death.
Follow these warnings exactly:
1. Do not attempt to convert step-opening models (suffix letter P).
2. Always change the main and pilot burner orifices when converting from natural to LP gas or from LP to natural gas. Carefully follow appliance manufacturer specifications and instructions to assure proper appliance conversion.
3. Gas controls are factory-set for natural (and manufactured) or LP gas. Do not attempt to use a gas control set for natural gas on LP gas, or a gas control set for LP gas on natural (manufactured) gas. Controls with standard, slow-opening, and two-stage regulators (model numbers with suffix H, K, M, or Q) can be converted from one gas to the other with a conversion kit (ordered separately). See Table 4 for the correct conversion kit.

Convertible Pressure Regulators
Controls with suffix letter R are convertible pressure regulator models. They can be converted from natural gas to LP gas or from LP gas to natural gas without a conversion kit.
Before converting the control from one gas to another, check the control label and the appliance manufacturer’s rating plate to determine if the pressure regulator setting (factory set) will meet the appliance manifold requirements after conversion.

NOTE: Convertible pressure regulator models (suffix letter R) do not have field-adjustable regulators. If the factory pressure regulator setting meets the appliance manifold requirement, convert the control as follows:
1. Remove the pressure regulator cap, Fig. 1.
2. Invert the cap so that the letters appear that represent the gas type appropriate for the appliance. NAT for natural manufactured gas, LP for liquid petroleum gas.
3. Replace the cap and tighten firmly.
Install Adapters To Control

If adapters are being installed on the control, mount them as follows:

Flanges
1. Choose the appropriate flange for your application.
2. Remove the seal over the control inlet or outlet.
3. Make sure that the O-ring is fit in the groove of the flange. If the O-ring is not attached or is missing, do not use the flange.
4. With the O-ring facing the control, align the screw holes on the gas control with the holes in the flange. Insert and tighten the screws provided with the flange. See Fig. 2. Tighten the screws 25 inch-pounds of torque to provide a gas-tight seal.

Bushings
1. Remove the seal over the control inlet or outlet.
2. Apply a moderate amount of good quality pipe compound to the bushing, leaving two end threads bare. On an LP installation, use compound that is resistant to LP gas. Do not use Teflon tape.
3. Insert the bushing in the control and carefully thread the pipe into the bushing until tight.

Complete the instructions below for installing the piping, installing the control, connecting the pilot gas tubing and the wiring. Make sure the leak test you perform on the control after completing the installation includes leak testing the adapters and screws. If you use a wrench on the valve after the flanges are installed, use the wrench only on the flange, not on the control. See Fig. 5.

Install Piping to Control

All piping must comply with local codes and ordinances or with the National Fuel Gas Code (ANSI Z223.1, NFPA No. 54), whichever applies. Tubing installation must comply with approved standards and practices.

1. Use new, properly reamed pipe that is free from chips. If tubing is used, make sure the ends are square, deburred and clean. All tubing bends must be smooth and without deformation.
2. Run pipe or tubing to the control. If tubing is used, obtain a tube-to-pipe coupling to connect the tubing to the control.
3. Install a sediment trap in the supply line to the control. See Fig. 3.

Location
The combination gas control is mounted in the appliance vestibule on the gas manifold. If this is a replacement application, mount the gas control in the same location as the old control.

Install Control

Mount gas control high enough above cabinet bottom to avoid exposure to flooding or splashing water. Avoid locating gas control where exposure to steam, or chemicals or to avoid dust and grease accumulation.

Connect Pilot Gas Tubing

1. Cut tubing to the desired length and bend as necessary for routing to the pilot burner. Do not make sharp bends or deform the tubing.
2. Square off and remove burns from the end of the tubing.
3. Unscrew the brass compression fitting from the pilot outlet (Fig. 6). Slip the fitting over the tubing and slide out of the way. See Fig. 7.
4. Apply a moderate amount of good quality pipe compound (do not use Teflon tape) only to the pipe. Leave the end threads bare. On LP installations, use a compound resistant to LP gas. See Fig. 4.
5. Remove the seal over the control inlet and outlet if necessary.
6. Connect the pipe to the control inlet and outlet. Use a wrench on the square ends of the control. If a flange is used, place the wrench on the flange rather than on the gas control. Refer to Fig. 5 and 6.

Complete the instructions below for installing the piping, installing the control, connecting the pilot gas tubing and the wiring. Make sure the leak test you perform on the control after completing the installation includes leak testing the adapters and screws. If you use a wrench on the valve after the flanges are installed, use the wrench only on the flange, not on the control. See Fig. 5.
VR8104, VR8204 AND VR8304 INTERMITTENT PILOT COMBINATION GAS CONTROLS

When Flange is Used

- Apply wrench from top or bottom of gas control to either shaded area to flange only.

When Flange is Not Used

- Follow appliance manufacturer instructions or turn up thermostat to call for heat.

VENT DAMPER PLUG (OPT)

Th-W

GND

24V (OPT)

BURNER

GND

24V SPARK

MV MV/PV PV SENSE

Perform Gas Leak Test

1. Paint pipe connections upstream of the gas control with rich soap and water solution. Bubbles indicate a gas leak.
2. If a leak is detected, tighten the pipe connections. If another leak is detected, tighten the adapter screws, joints, and pipe connections.
3. With the main burner in operation, paint the pipe joints (including adapters) and the control inlet and outlet with rich soap and water solution.
4. Replace the part if a leak cannot be stopped.

Import

- Do not spray soap and water solution on the gas control. Do not use an excessive amount of soap and water solution to perform the gas leak test. These can damage the control.

Check and Adjust Pilot Flame

The pilot flame should envelop 3/8 to 1/2 in. (10 to 13 mm) of the tip of the igniter-sensor. See Fig. 9. If the pilot flame is small or lazy, the inlet gas pressure may be too low, or the pilot orifice may be partially clogged. Check and repair as necessary. If the pilot flame is hard and noisy, the inlet gas pressure may be too high. The gas control has a pilot adjustment mechanism to reduce the pilot flow if necessary. If pilot adjustment is necessary, proceed as follows:

1. Remove pilot adjustment cover screw. See Fig. 6.
2. The pilot adjustment is shipped at the full pilot gas flow rate. Turn the inner adjustment screw clockwise to decrease or counterclockwise to increase pilot flame.
3. Replace the cover screw after the adjustment to prevent gas leakage.

Wiring

- Follow the wiring instructions furnished by the appliance manufacturer, if available, or use the general instructions provided below. When these instructions differ from the appliance manufacturer, follow the appliance manufacturer instructions.

Gas Leak Test

WARNING

- Fire or Explosion Hazard. Can cause property damage, severe injury or death. Perform Gas Leak Test every time work is done on a gas system.

Perform Gas Leak Test

STARTUP AND CHECKOUT

- Gas control knob settings are as follows:
 - OFF: Prevents pilot and main gas flow through the control.
 - ON: Gas control knob settings are as follows:

GAS CONTROL

KNOB

SAY TO PILOT BURNER

BURNER OUTLET

INLET

- Connect control circuit to the gas control terminals. See Fig. 8.
- Connect transformer, thermostat and other controls as required.
- Disconnect power supply before making wiring connections to prevent electrical shock or equipment damage.

Turn On Main Burner

Follow appliance manufacturer instructions or turn up thermostat to call for heat.

WARNING

- Fire or Explosion Hazard. Can cause property damage, severe injury or death. Perform Gas Leak Test every time work is done on a gas system.

IMPORTANT

- Do not spray soap and water solution on the gas control. Do not use an excessive amount of soap and water solution to perform the gas leak test. These can damage the control.
Check Adjust Gas Input and Burner Ignition

IMPORTANT

1. Do not exceed input rating stamped on appliance nameplate, or manufacturer’s recommended burner orifice size (orifice(s) used). Make certain primary air supply to main burner is properly adjusted for complete combustion. Follow appliance manufacturer instructions.

2. IF CHECKING GAS INPUT BY CLOCKING GAS METER: Make certain there is no gas flow through the meter other than to the appliance being checked. Gas appliances must remain off with the pilots extinguished (or deduct their consumption from the meter reading). Convert flow rate to Btu/h as described in form 70-2602, Gas Controls Handbook, and compare to Btu input rating on appliance nameplate.

3. IF CHECKING GAS WITH MANOMETER: Make sure the gas control knob is in the OFF position before removing outlet pressure tap plug to connect manometer (pressure gauge). Also move the gas control knob to the OFF position when removing the gauge and replacing the plug. Before removing inlet pressure tap plug, shut off gas supply at the manual valve in the gas piping to the appliance or, for LP at the tank. Also shut off gas supply to the metering manometer and replacing plug. Repeat Gas Leak Test at plug with main burner operating.

NOTE: Check the inlet pressure before adjusting the pressure regulator.

Standard and Slow-Opening (H, K and M) Models

1. Carefully check the main burner lightoff. Make sure that the main burner lights smoothly and that all ports remain lit.
2. Check the full rate manifold pressure listed on the appliance nameplate. Gas control full rate outlet pressure should match this rating.
3. With main burner operating, check the gas control flow rate using the meter clocking method or check pressure using a manometer connected to the outlet pressure tap on the gas control. See Fig. 6.
4. If necessary, adjust the pressure regulator to match the appliance rating. See Tables 8A and 8B for factory-set nominal outlet pressure and adjustment range.
 a. Remove the pressure regulator adjustment cap.
 b. Using a screwdriver, turn the inner adjustment screw (Fig. 6) clockwise () to decrease the gas pressure to the burner.
 c. Always replace the cap screw and tighten firmly to prevent gas leakage.
5. If the desired outlet pressure or flow rate cannot be achieved by adjusting the gas control, check the gas control inlet pressure using a manometer at the inlet pressure tap of the gas control. If the inlet pressure is in the nominal range (see Tables 8A and 8B), replace the gas control. Otherwise, take the necessary steps to provide proper gas pressure to the control.

Step-Opening (P) Models

Step-opening models require that you check and adjust the full-rate pressure first and then check the step pressure. The step pressure is not field adjustable.

1. Carefully check the main burner lightoff. Make sure that the main burner lights smoothly and that all ports remain lit.
2. Check the full rate manifold pressure listed on the appliance nameplate. Gas control full rate outlet pressure should match this rating.
3. With main burner operating, check the gas control flow rate using the meter clocking method or check pressure using a manometer connected to the outlet pressure tap on the gas control. See Fig. 6.
4. If necessary, adjust the pressure regulator to match the appliance rating. See Tables 8A and 8B for factory-set nominal outlet pressure and adjustment range.
 a. Remove the pressure regulator adjustment cap.
 b. Using a screwdriver, turn the inner adjustment screw for HI pressure clockwise () to increase or counterclockwise () to decrease the gas pressure to the burner.
5. If the desired outlet pressure or flow rate cannot be achieved by adjusting the gas control, check the gas control inlet pressure using a manometer at the inlet pressure tap on the gas control. See Fig. 6.
6. If necessary, adjust the low pressure regulator to match the appliance rating. See Tables 8A and 8B for factory-set nominal outlet pressure and adjustment range.
 a. Remove the pressure regulator adjustment cap.
 b. Using a screwdriver, turn the inner adjustment screw for LO pressure clockwise () to increase or counterclockwise () to decrease the gas pressure to the burner.
7. Check the low rate manifold pressure listed on the appliance nameplate. Gas control low rate outlet pressure should match this rating.
8. With main burner operating, check the gas control flow rate as before (using the meter clocking method or check pressure using a manometer connected to the outlet pressure tap on the control).
9. If necessary, adjust the low pressure regulator to match the appliance rating. See Tables 8A and 8B for factory-set nominal outlet pressure and adjustment range.
 a. Remove the pressure regulator adjustment cap.
 b. Using a screwdriver, turn the inner adjustment screw for LO pressure clockwise () to increase or counterclockwise () to decrease the gas pressure to the burner.
10. Once high and low pressure have been checked and adjusted, replace pressure regulator adjustment cap. If the desired outlet pressure or flow rate cannot be achieved by adjusting the gas control, check the control inlet pressure using a manometer at the inlet pressure tap of the control. If the inlet pressure is in the nominal range (see Tables 8A and 8B), replace the gas control. Otherwise, take the necessary steps to provide proper gas pressure to the control.

Check Safety Shutdown Performance

WARNING
Fire or Explosion Hazard. Can cause property damage, severe injury or death. Perform the safety shutdown test any time work is done on a gas system.

NOTE: Read steps 1 through 7 before starting, and compare to the safety shutdown or safety lockout tests recommended for the intermittent pilot (P) ignition module. Where different, use the procedure recommended for the module.

1. Turn off gas supply.
2. Set thermostat or controller above room temperature to call for heat.
3. Watch for ignition spark or for glow at hot surface ignition module specifications.
4. Operate system through one complete cycle to burn. With modules that continue to spark until the pilot lights or the system shuts down manually, the pilot should light when the manual gas control knob is opened.
5. Set the thermostat below room temperature and wait one minute.
6. Operate system through one complete cycle to make sure all controls operate properly.

Table 8A, Regulator Specification Pressures (in. wc.)

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Type of Gas</th>
<th>Nominal Inlet Pressure Range</th>
<th>Factory Set</th>
<th>Full Rate Pressure</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard, Slow</td>
<td>NAT</td>
<td>5.0 to 7.0</td>
<td>Step</td>
<td>3.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>LP</td>
<td>12.0 to 14.0</td>
<td>—</td>
<td>10.0</td>
<td>—</td>
</tr>
<tr>
<td>Step</td>
<td>NAT</td>
<td>5.0 to 7.0</td>
<td>0.9</td>
<td>3.5</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>LP</td>
<td>12.0 to 14.0</td>
<td>2.2</td>
<td>10.0</td>
<td>None</td>
</tr>
<tr>
<td>Two-Stage</td>
<td>NAT</td>
<td>5.0 to 7.0</td>
<td>—</td>
<td>1.7</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>LP</td>
<td>121.0 to 14.0</td>
<td>—</td>
<td>4.9</td>
<td>10.0</td>
</tr>
</tbody>
</table>

* Low Fire setting range for VR8304Q 1/2 in. by 1/2 in. and 12 in. by 3.4 in. is 1.5 to 3.0 in. wc.
Table 8B. Pressure Regulator Specification Pressures (kPa).

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Type of Gas</th>
<th>Nominal Inlet Pressure Range</th>
<th>Factory Set Pressure</th>
<th>Nominal Outlet Pressure</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Step</td>
<td>Full Rate</td>
<td>Step</td>
<td>Full Rate</td>
</tr>
<tr>
<td>Standard, Slow</td>
<td>NAT</td>
<td>1.2 to 1.7</td>
<td>—</td>
<td>0.9</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>LP</td>
<td>2.9 to 3.9</td>
<td>—</td>
<td>2.5</td>
<td>—</td>
</tr>
<tr>
<td>Step</td>
<td>NAT</td>
<td>1.2 to 1.7</td>
<td>0.2</td>
<td>0.9</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>LP</td>
<td>2.9 to 3.9</td>
<td>0.5</td>
<td>2.5</td>
<td>None</td>
</tr>
<tr>
<td>Two-stage NAT</td>
<td>1.2 to 1.7</td>
<td>—</td>
<td>0.48 Low 0.9 High</td>
<td>—</td>
<td>0.22 to 0.75 Lowa 0.75 to 1.2 High</td>
</tr>
<tr>
<td></td>
<td>LP</td>
<td>2.9 to 3.9</td>
<td>—</td>
<td>1.2 Low 2.5 High</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: Low Fire setting range for VR8304Q 1/2 in. by 1/2 in. and 1/2 in. by 3.4 in. is 0.37 to 0.75 kPa.

Non-Regulating On-Off (U) Models
Non-regulating VR8204U Valves are designed for application in various parts of Europe where a separate, distinct pressure regulator is required. The VR8204U is similar to the VR8204A in all other aspects and should be installed accordingly.

MAINTENANCE

WARNING

Fire or Explosion Hazard. Can cause property damage, severe injury, or death.

Do not disassemble the gas control; it contains no replaceable components. Attempted disassembly, repair, or cleaning can damage the control, resulting in gas leakage.

Regular preventive maintenance is important for applications in the commercial cooking and agricultural and industrial industries that place a heavy load on system controls because:

- In many such applications, particularly commercial cooking, the equipment operates 100,000 to 200,000 cycles per year. Such heavy cycling can wear out the gas control in one to two years.
- Exposure to water, dirt, chemicals and heat can damage the gas control and shut down the system.
- The maintenance program should include regular checkouts of the control as outlined in the Startup and Checkout section, and the control system as described in the appliance manufacturer literature.

Maintenance frequency must be determined individually for each application. Some considerations are:

- Cycling frequency. Appliances that may cycle 20,000 times annually should be checked monthly.
- Intermittent use. Appliances that are used seasonally should be checked before shutdown and again before the next use.
- Consequence of unexpected shutdown. Where the cost of an unexpected shutdown would be high, the system should be checked more often.

CAUTION

Equipment Damage. Can burn out valve coil terminals.

Never apply a jumper across (or short) the valve coil terminals, even temporarily.

After servicing, verify proper system operation.

If Main Burner Does Not Come On With Call For Heat

1. Confirm the gas control knob is in the ON position.

2. Adjust thermostat several degrees above room temperature.

3. Using an ac voltmeter, check for 24V at gas control:
 - If pilot lights, measure across MV/PV and MV.
 - If pilot does not light, measure across MV/PV and PV before safety lockout occurs.

4. If voltage is incorrect or not present, check control circuit for proper operation.

5. If 24V is present, replace gas control.

INSTRUCTIONS TO THE HOMEOWNER

WARNING

Fire or Explosion Hazard. Can cause property damage, severe injury, or death.

Follow these warnings exactly:

1. Pilot flame is lit automatically. Do not light the pilot flame manually.

2. Before lighting the pilot burner flame, smell around the appliance for gas. Be sure to smell next to the floor because LP gas is heavier than air. If you smell gas:
 - Turn off the gas supply at the appliance service valve. On LP gas systems, turn off the gas supply at the gas tank.
 - Do not light any appliances in the house.
 - Do not touch electrical switches or use the phone.
 - Leave the building and use a neighbor’s phone to call your gas supplier.
 - If you cannot reach your gas supplier, call the fire department.

3. Replace the gas control in the event of any physical damage, tampering, bent terminals, missing or broken parts, stripped threads, or evidence of exposure to heat.

IMPORTANT

Follow the operating instructions provided by the heating appliance manufacturer. The information below describes a typical control application, but the specific controls used and the procedures outlined in your appliance manufacturer instructions can differ, requiring special instructions.

SERVICE

WARNING

Fire or Explosion Hazard. Can cause property damage, severe injury, or death.

Do not disassemble the control; it contains no replaceable components. Attempted disassembly, repair, or cleaning can damage the gas control, resulting in gas leakage.

CAUTION

Equipment Damage. Can burn out valve coil terminals.

Never apply a jumper across (or short) the valve coil terminals, even temporarily.

After servicing, verify proper system operation.

If Main Burner Does Not Come On With Call For Heat

1. Confirm the gas control knob is in the ON position.

2. Adjust thermostat several degrees above room temperature.

3. Using an ac voltmeter, check for 24V at gas control:
 - If pilot lights, measure across MV/PV and MV.
 - If pilot does not light, measure across MV/PV and PV before safety lockout occurs.

4. If voltage is incorrect or not present, check control circuit for proper operation.

5. If 24V is present, replace gas control.

STOP: Read the Warnings Above Before Proceeding.

The pilot flame is lit automatically. If the appliance does not turn on when the thermostat is set several degrees above room temperature, follow these instructions:

1. Set the thermostat to its lowest setting to reset the safety control.

2. Disconnect all electric power to the appliance.

3. Remove the burner access panel if provided on your appliance.

4. Turn the gas control knob clockwise to the OFF position.

5. Wait five minutes to clear out any unburned gas. Then if you smell gas, STOP! Follow Step 2 in the Warning above. If you do not smell gas, continue with the next step.

6. Turn the gas control knob counterclockwise to the ON position.

7. Replace the burner access panel.

8. Reconnect all electric power to the appliance.

9. Set the thermostat to the desired setting.

SERVICE

Vacation Shutdown

Set the thermostat to the desired room temperature while you are away.

Complete Shutdown

Turn off power to the appliance. Turn off the gas supply to the appliance. Turn the gas control knob to OFF. The appliance will completely shut off. Follow the procedure in the Instructions to the Homeowner section above to resume normal operation.

Home and Building Control
Honeywell Inc.
1985 Douglas Drive North
Golden Valley, Minnesota 55422

HOME AND BUILDING CONTROL
Honeywell Limited-Honeywell Limitée
35 Dynamic Drive
Scarborough, Ontario
M1V 4Z9

Printed in U.S.A. on recycled paper containing at least 10% post-consumer paper fibers.
DELIMING PROCEDURE — Connect Ace deliming kit as shown in picture.

1. Close gas cock at heater.
2. Turn off water to and from heater and drain heater.
3. Type “C” ACE Heater, remove upper aquastat and well and install faucet; Type “D”, “E” and “G” ACE Heater, remove pipe plug on left side of upper heater manifold and install faucet.
4. Attach hose from pump to top faucet and return hose from acid container to lower faucet as shown in picture.
5. Pour water into plastic container and add equal amount of acid. Approximately 4 gallons of diluted solution is required for 400,000 BTU and smaller heaters, 5 gallons to 7 gallons for heaters up to 760,000 BTU and 9 gallons for heaters between 1,000,000 and 1,500,000 BTU.
6. Turn on pump and circulate solution until foaming action of the solution stops indicating that dissolving of the lime has been completed. Add approximately an additional quart of solution to insure that end of foaming is not due to spent acid. Do not continue to pump acid solution for a prolonged time after foaming stops because the acid will dissolve the copper and brass.
7. Flush heater out with baking soda and water solution and return it to service.

In case of a completely plugged coil it is recommended that a heater serviceman be called in to do the deliming.

CAUTION! Avoid spilling or dripping acid on hands, face, clothing or Electrical Controls or wiring. Cover controls with plastic sheeting such as Saran, or Polyethylene Bag, to avoid damage to these parts. Use a baking soda and water solution to neutralize any acid on hands, face, controls, etc.

NON-ACID DELIMING SOLUTION — For those preferring to use a non-acid base solution, it will be noted that the effectiveness of such a solution is shorter-lived than regular acid and usually requires more stock solution. Such a solution, called “LIMINAL”, may be obtained from Polytek Co., 5112 W. Jefferson Blvd., Los Angeles, Calif. 90016. Also in the eastern area contact Tri-Bros. Chemical Corp., P.O. Box 2, Morton Grove, Illinois 60053 for solution called “Lime Eater”.

Water heaters that use fresh water will develop a coating of lime if the fresh water is not softened or if it is not naturally free from undissolved solids. When a water softener does not function properly, due to lack of servicing or due to undersizing, the heater will develop lime.

For deliming, use solution of muriatic acid (which can be purchased from any drug or pool supply store) and dilute with equal amount of water to obtain a 50% solution for normal deliming. Caution: Always add acid to water when diluting. Adding water to acid can result in splashing and acid burns. If coil has a heavy coating of lime, use only 10% solution of acid of acid to start with to prevent chunks of lime from breaking loose and plugging the coil before dissolving.

Ace Heating Solutions, LLC
2701 S. Harbor Blvd.
Santa Ana, CA 92704
Phone: (714) 540-2230
Fax: (714) 540-2239
www.aceheatingllc.com

EFFECTIVE — Ace single coil, no parallel tubes, insures that all lime is removed

FAST — Simple hook up and single coil allows deliming to be accomplished in one hour or less under normal conditions

ECONOMICAL — Acid costs should not exceed $15.00 on largest heater. Muriatic acid can be purchased at most drug stores or pool supply dealers.

Packages are available for domestic hot water systems, laundry heaters, car wash systems, and swimming pool heating.